
Journal of Network and Computer Applications] (]]]])]]]–]]]
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

� Corr

E-m

URL

Pleas
Appl
journal homepage: www.elsevier.com/locate/jnca
Secure and privacy preserving keyword searching for cloud storage services
Qin Liu a,b, Guojun Wang a,�, Jie Wu b

a School of Information Science and Engineering, Central South University, Changsha, Hunan Province 410083, PR China
b Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
a r t i c l e i n f o

Article history:

Received 29 July 2010

Received in revised form

11 January 2011

Accepted 9 March 2011

Keywords:

Cloud storage

Security

Privacy preserving

Partial decipherment

Searchable encryption
45/$ - see front matter & 2011 Elsevier Ltd. A

016/j.jnca.2011.03.010

esponding author.

ail addresses: csgjwang@gmail.com, csgjwang

: http://trust.csu.edu.cn/faculty/�csgjwang (G

e cite this article as: Liu Q, et al. Sec
(2011), doi:10.1016/j.jnca.2011.03.0
a b s t r a c t

Cloud storage services enable users to remotely access data in a cloud anytime and anywhere, using any

device, in a pay-as-you-go manner. Moving data into a cloud offers great convenience to users since

they do not have to care about the large capital investment in both the deployment and management of

the hardware infrastructures. However, allowing a cloud service provider (CSP), whose purpose is

mainly for making a profit, to take the custody of sensitive data, raises underlying security and privacy

issues. To keep user data confidential against an untrusted CSP, a natural way is to apply cryptographic

approaches, by disclosing the data decryption key only to authorized users. However, when a user

wants to retrieve files containing certain keywords using a thin client, the adopted encryption system

should not only support keyword searching over encrypted data, but also provide high performance. In

this paper, we investigate the characteristics of cloud storage services and propose a secure and privacy

preserving keyword searching (SPKS) scheme, which allows the CSP to participate in the decipherment,

and to return only files containing certain keywords specified by the users, so as to reduce both the

computational and communication overhead in decryption for users, on the condition of preserving

user data privacy and user querying privacy. Performance analysis shows that the SPKS scheme is

applicable to a cloud environment.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Cloud computing (Weiss, 2007), as one of the 2010 top 10
strategic technologies, dynamically provides high-quality cloud-
based services and applications over the Internet. Cloud storage
services, which can be regarded as a kind of typical service in
cloud computing, involves the delivery of data storage as a
service. Cloud storage services, including database-like services
and network attached storage, are often billed on a utility
computing basis, e.g., per gigabyte per month. For example, the
Amazon simple storage service (Amazon S3) charges only from
$0.12 to $0.15 per gigabyte per month.

One of the biggest merits of cloud storage is that users can
access data in a cloud anytime and anywhere, using any device.
We consider the following application scenario: A user U pays a
cloud service provider (CSP) for a cloud storage service in order to
store his email messages, and later he wants to retrieve only
emails containing certain keywords when he is traveling with a
thin client, such as a wireless PDA or a mobile phone.

It is trivial to do so when the email messages are stored in the
form of plaintexts. But, this will result in undesirable security and
ll rights reserved.

@mail.csu.edu.cn (G. Wang).

. Wang).

ure and privacy preserving
10
privacy risks. For example, U is a technician in Company A who is
in charge of after-sale services. He stores all the emails sent from
customers in a cloud when he is in the office with a desktop, and
retrieves them to tackle service requests from customers when he
is out in the field with his PDA. In such an environment, an
attacker who intercepts and captures the communications is able
to know a customer’s privacy information as well as some
important business secrets. Even worse, an untrustworthy CSP
is able to easily obtain all the information and sell it to the biggest
rival of Company A.

As described in Haclgiimfi et al. (2002), there are two main
attacks under such a circumstance, i.e., external attacks initiated
by unauthorized outsiders and internal attacks initiated by
untrustworthy CSPs. In some cases, we cannot fully trust a CSP,
but still need its services. Therefore, some mechanisms are
needed to protect the user data privacy and the user querying
privacy in a cloud environment. To protect user querying privacy
is equally important in user data privacy. Without proper protec-
tion for the user querying privacy, an attacker may know the
user’s private interests and querying patterns. For the above
example, Company B is able to know who sends emails more
often than other customers by analyzing the frequency of occur-
rences of the keywords, which are the customers’ email
addresses, and classifies them as its potential customers.

The natural approach is to encrypt the emails before storing
them in the cloud and send queries in the form of encrypted
keyword searching for cloud storage services. J Network Comput

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2011.03.010
mailto:csgjwang@gmail.com
mailto:csgjwang@mail.csu.edu.cn
mailto:http://trust.csu.edu.cn/faculty/~csgjwang.3d
mailto:http://trust.csu.edu.cn/faculty/~csgjwang.3d
dx.doi.org/10.1016/j.jnca.2011.03.010
dx.doi.org/10.1016/j.jnca.2011.03.010

Q. Liu et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]2
keywords to retrieve them. For example, a user may use his public
key to encrypt an email and its keywords before sending it to the
CSP, and then sends queries in the form of encrypted keywords to
retrieve the email. Since the secret key is only known to the user
himself, an attacker is not aware of the encrypted files, the
encrypted keywords, and the user querying patterns. However,
such a simple encryption scheme may introduce other problems:
(1) It depletes too much CPU capability and memory power of the
client during the encryption and decryption; (2) The CSP cannot
determine which emails contain keywords specified by a user if
the encryption is not searchable, and can only return all the
encrypted emails. Generally speaking, a thin client has only
limited bandwidth, CPU, and memory, therefore, a simple encryp-
tion scheme cannot work well under these circumstances.

We propose the SPKS scheme for cloud storage services to
solve the above problem. Our contributions are threefold:
1.
P
A

It is efficient and practical. The SPKS scheme enables CSPs to
participate in the partial decipherment so as to reduce com-
putational overhead on users, without leaking any information
about the plaintext. We analyze the performance of our
scheme, and show that it outperforms the scheme proposed
by Boneh et al. (2004) when applied to a cloud environment.
2.
 It supports keyword searching on encrypted data. The SPKS
scheme enables the CSP to determine whether a given email
contains certain keywords specified by a user, but is not aware
of any information about both the keywords and the email.
3.
 It is a provably secure scheme. The SPKS scheme can be proved
to be semantically secure under the Bilinear Diffie–Hellman
(BDH) assumption and the random oracle model (Boneh and
Franklin, 2003).

This paper is structured as follows: First, we review some
related work in Section 2, and introduce some preliminaries in
Section 3. Then, we outline the SPKS scheme and give security
definition in Section 4. Next, we construct the proposed scheme in
Section 5, and analyze its performance in Section 6. Finally, we
conclude this paper in Section 7.
2. Related work

The question on how to achieve keyword searching on
encrypted data efficiently was first raised in Song et al. (2000).
Since then, there has been much work conducted in this field, such
as Haclgiimfi et al. (2002), Boneh et al. (2004), Chang and
Mitzenmacher (2005), Boneh and Waters (2007), Shi et al.
(2007), and Liu et al. (2009). Boneh et al. (2004) proposed a public
key encryption with keyword searching (PEKS) scheme, which
enables a gateway to test whether certain keywords are contained
in an email without learning any information about the email and
keywords. The key technique to make the PEKS scheme work is
that an email and corresponding keywords are encrypted under
the standard public key encryption algorithm and the PEKS
algorithm, respectively.

In our previous work (Liu et al., 2009), to allow users to
efficiently access files containing certain keywords in a cloud
anytime and anywhere using any device, we proposed an efficient
privacy preserving keyword searching scheme (EPPKS) in cloud
computing by making performance improvements to the PEKS
scheme. Inspired by the work of Diament et al. (2004), our
previous work introduced the notion of ‘‘partial decipherment’’
into the process of searching encrypted data so as to reduce the
computational overhead in decryption for users. The key techni-
que to make the EPPKS scheme work is that a file is encrypted
under the public keys of both the CSP and the user, so that the CSP
lease cite this article as: Liu Q, et al. Secure and privacy preserving
ppl (2011), doi:10.1016/j.jnca.2011.03.010
with the ability to calculate an intermediate result of the
decipherment using its private key, is able to participate in the
partial decipherment before returning files containing certain
keywords specified by the user. Based on the BDH assumption,
the CSP cannot know file contents and keywords.

However, there are still some unsolved issues in our previous
work. First, it lacks performance analysis and comparisons with
the existing schemes. Second, a user needs to send the additional
n-bits length ciphertext to the CSP for the sake of reducing the
computational overhead in decryption, which will increase the
communication cost to a certain degree. Third, it assumes that
the length of all emails is either shorter than or the same as n,
which is not practical in the real environment. In this paper, we
propose the SPKS scheme for cloud storage services to address
these issues.

3. Preliminaries

In this section, we first introduce some related definitions and
complexity assumptions, which closely follows (Boneh and
Franklin, 2003), and then outline the PEKS scheme proposed in
Boneh et al. (2004).

3.1. Related definitions

Let G1 and G2 be two cyclic groups of some large prime order
q. We view G1 as an additive group and G2 as a multiplicative
group.

Definition 3.1 (Bilinear map). We call ê a bilinear map if ê :
G1 �G1-G2 is a map with the following properties:
1.
key
Computable: There is a polynomial time algorithm to compute
êðg,hÞAG2, for any g,hAG1.
2.
 Bilinear: êðgx,hyÞ ¼ êðg,hÞxy for all g,hAG1 and all x,yAZq.

3.
 Non-degenerate: if g is a generator of G1, then êðg,gÞ is a

generator of G2.

Note that the Weil and Tate pairings associated with super-
singular elliptic curves or abelian varieties can be modified to
create a bilinear map. In Section 6, we use the Weil pairing to
construct a bilinear map to analyze the performance of our
scheme.

Definition 3.2 (BDH parameter generator). We say that a rando-
mized algorithm IG is a BDH parameter generator if IG takes a
sufficiently large security parameter K40, runs in polynomial
time in K, and outputs the description of two groups G1 and G2 of
the same prime order q and the description of a bilinear map
ê : G1 �G1-G2.

Definition 3.3 (BDH problem). Given a random element gAG1, as
well as gx, gy, and gz, for some x,y,zAZq, compute êðg,gÞxyzAG2.

Definition 3.4 (BDH assumption). If IG is a BDH parameter gen-
erator, the advantage AdvIGðBÞ that an algorithm B has in solving
the BDH problem is defined as the probability that B outputs
êðg,gÞxyz on inputs G1, G2, ê, g, gx, gy, gz, where ðG1,G2,êÞ is the
output of IG for sufficiently large security parameter K, g is a
random generator of G1, and x, y, z are random elements of Zq. The
BDH assumption is that AdvIGðBÞ is negligible for any efficient B.

3.2. Outline of the PEKS scheme

The application context of the PEKS scheme is as follows:
(1) Bob sends to Alice an email encrypted under Alice’s public
key; (2) Alice’s email gateway wants to test whether the email
word searching for cloud storage services. J Network Comput

dx.doi.org/10.1016/j.jnca.2011.03.010

Q. Liu et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 3
contains the keyword urgent so that it could route the email to her
PDA immediately; (3) But, Alice does not want the email gateway
to be able to decrypt her messages. The PEKS scheme, which
works as in Fig. 1, consists of the following four algorithms:
1.
P
A

KeyGenðKÞ: Takes a security parameter K as input, and gen-
erates a public/private key pair (Apub,Apriv) for Alice.
2.
 PEKSðApub,W 0Þ : Given Alice’s public key Apub and a word W 0,
produces a searchable encryption S for W 0.
3.
 TrapdoorðApriv,WÞ: Given Alice’s private key Apriv and a key-
word W, produces a trapdoor TW for W.
4.
 TestðApub,S,TWÞ: Given Alice’s public key Apub, a searchable
encryption S¼ PEKSðApub,W 0Þ, and a trapdoor TW ¼ Trapdoor

ðApriv,WÞ, outputs ‘‘yes’’ if W ¼W 0 and ‘‘no’’ otherwise.

The PEKS scheme can be easily applied to the application
scenario in Section 1 as follows: (1) Alice and Bob might be the
same person, i.e., the user U, who runs the KeyGen algorithm to
generate his public/private key pair; (2) U first uses the standard
public key encryption algorithm and the PEKS algorithm to
encrypt an email and corresponding keywords, respectively.
(3) When U wants to retrieve emails containing a keyword W,
he runs the Trapdoor algorithm to compute a short trapdoor for W

using his private key, and then sends it to the CSP. (4) On
receiving the trapdoor, the CSP uses the Test algorithm to find
all emails containing keyword W while not being aware of emails
and W.

However, such a simple transformation may not work well in
cloud computing. In the PEKS scheme, a user encrypts the email
using a standard public key system, and the CSP simply returns
the relevant emails after finishing the search, which enables the
user to decrypt the ciphertext by himself. Frequent decryption
will deplete too much CPU and memory capabilities of the client
and lose the critical virtue of cloud computing, i.e., enabling users
to access data in a cloud anytime and anywhere, using any device.
Therefore, we propose the SPKS scheme, which enables the CSP
not only to determine which files contain certain keywords
specified by the user, but also to participate in the partial
decipherment to get an intermediate result of the decipherment
before returning the search results, so as to reduce both the
communication and computational overhead in decryption for
the user greatly, on the condition of preserving user data privacy
and user querying privacy.
Fig. 1. The working process of the PEKS scheme.

lease cite this article as: Liu Q, et al. Secure and privacy preserving
ppl (2011), doi:10.1016/j.jnca.2011.03.010
4. Outline of the proposed scheme

4.1. Definitions

Suppose a user U is about to store an encrypted email with
keywords W1, . . . ,Wk on cloud servers, where kAZþ . Keywords
may be words in a news headline or an accepted date of an email,
and k is a relatively small number. U sends the following message
to the CSP:

MSGU2CSP ¼ ½EMBEncðUpub,Spub,mÞ,KWEncðUpub,W1Þ, . . . ,KWEncðUpub,WkÞ�,

where Upub is U’s public key, Spub is the CSP’s public key, and m is
the email. EMBEnc and KWEnc are public key encryption algo-
rithms that will be described below.

Definition 4.1 (SPKS). The SPKS scheme, which works as in Fig. 2,
consists of seven randomized polynomial time algorithms as
follows:
1.
key
KeyGen: It takes a sufficiently large security parameter K1 as
an input and produces a public/private key pair (Upub,Upriv) for
a user. We write KeyGenðK1Þ ¼ ðUpub,UprivÞ. Let K2 be a suffi-
ciently large security parameter, we write KeyGenðK2Þ ¼

ðSpub,SprivÞ for the CSP.

2.
 EMBEnc: It is a public key encryption algorithm that takes two

public keys Upub and Spub, and a message mAM as inputs, and
produces m’s ciphertext CmACM . We write EMBEnc

ðUpub,Spub,mÞ ¼ Cm.

3.
 KWEnc: It is a public key encryption algorithm that takes

a public key Upub and a keyword WiAW (iAZþ) as inputs,
and produces Wi’s ciphertext CWi

ACW . We write KWEnc

ðUpub,WiÞ ¼ CWi
.

4.
 TCompute: It takes a private key Upriv and a keyword Wj

(jAZþ) as inputs, and produces Wj’s trapdoor TWj
. We write

TComputeðUpriv,WjÞ ¼ TWj
.

5.
 KWTest: It takes a public key Upub, an encrypted keyword
CWi

, and a trapdoor TWj
as inputs, and outputs 1 or 0. KWTest

ðUpub,CWi
,TWj
Þ ¼ 1 if Wi ¼Wj, and 0 otherwise.
6.
 PDecrypt: It takes a private key Spriv, a public key Upub, and a
ciphertext Cm as inputs, and outputs an intermediate result Cr
of the decipherment. We write PDecryptðSpriv,Upub,CmÞ ¼ Cr.
7.
 Recovery: It takes a private key Upriv, a ciphertext Cm, and an
intermediate result Cr as inputs, and outputs the plaintext m.
We write RecoveryðUpriv,Cm,CrÞ ¼m.

According to Fig. 2, the SPKS scheme works as follows: (1) U

and the CSP run the KeyGen algorithm to generate their public/
private key pairs, respectively. (2) When U wants to store an
email m containing keywords W1, . . . ,Wk on cloud servers, U first
Fig. 2. The working process of the SPKS scheme.

word searching for cloud storage services. J Network Comput

dx.doi.org/10.1016/j.jnca.2011.03.010

Q. Liu et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]4
runs the EMBEnc algorithm to encrypt the email, and then runs
KWEnc to encrypt all the keywords, respectively, and finally sends
both the ciphertext of the email and keywords to the CSP.
(3) When U wants to retrieve emails containing keyword
WjðjAZþ Þ, he runs the TCompute algorithm to generate Wj’s
trapdoor TWj

and sends it to the CSP. (4) On receiving the
trapdoor, the CSP runs the KWTest algorithm to determine
whether a given email contains keyword Wj specified by U.
(5) Before returning the results to U, the CSP runs PDecrypt to
calculate an intermediate result Cr for the decipherment. After
that, it returns Cr along with the encrypted emails. (6) Given a
ciphertext and Cr, U runs the Recovery algorithm to recover the
plaintext. The SPKS scheme can support multiple keyword
searching on the encrypted data while preserving the user
privacy. For the sake of illustration, we only show a single
keyword searching case in this paper.

4.2. Semantic security of the SPKS scheme

We define security for the SPKS scheme in the sense of
semantic security (Boneh and Franklin, 2003). Semantic security
captures our intuition that, given a ciphertext, the adversary
learns nothing about the corresponding plaintext, thus, we also
say that a semantically secure scheme is IND-CPA secure. Recall
that the SPKS scheme consists of two public key encryption
algorithms, i.e., algorithms EMBEnc and KWEnc, where KWEnc

closely follows the PEKS algorithm, whose security had been
proved in Boneh et al. (2004). Therefore, we define the semantic
security for the SPKS scheme as follows:

Definition 4.2 (Semantic Security of the SPKS scheme). Given the
SPKS scheme, and two sufficiently large security parameters K1 and
K2, generate the public/private key pairs KeyGenðK1Þ ¼ ðUpub,UprivÞ

and KeyGenðK2Þ ¼ ðSpub,SprivÞ. Let A be a polynomial time IND-CPA
adversary that can adaptively ask for the ciphertext for any message
miAM of its choice. A first chooses two messages m0 and m1, which
are not to be asked for the ciphertext previously, and sends them to
the challenger. Then, the challenger picks a random element
bAf0,1g, and gives A the ciphertext Cmb

¼ EMBEncðUpub,Spub,mbÞ.
Finally,A outputs a guess b0Af0,1g for b. We define the advantage of
A in breaking the SPKS scheme as AdvAðkÞ ¼ jPr½b¼ b0�� 1

2 j. We say
that the SPKS scheme is semantically secure if for any polynomial
time adversary A, the function AdvAðkÞ is negligible.

5. Construction of the SPKS scheme

In this section, we construct the SPKS scheme using the
bilinear maps. Let IG be some BDH parameter generator, which
runs in polynomial time to generate a prime q, two groups G1 and
G2 of prime order q, a random generator g of G1, and a bilinear
map ê : G1 �G1-G2. Let H1, H2, H3, H4 and H5 are random
oracles, where H1,H3 : f0,1g�-G�1, H2,H5 : G2-f0,1glogq

, and
H4 : G2-f0,1gn. The plaintext space includes MAf0,1gn for some
n and WAf0,1g�. The ciphertext space includes CM ¼G�1 � f0,1gn

and CW AG2. We can either pad the shorter emails or split the
longer emails to make all the emails an equal length n. We
present our scheme by describing the following seven algorithms:
1.
P
A

KeyGen: Given a sufficiently large security parameter K1AZþ ,
it picks a random element xAZq and computes gx. A user’s
public key is gx with the corresponding private key x. Given a
sufficiently large security parameter K2AZþ , it picks a ran-
dom element yAZq and computes gy. In addition, the CSP’s
public key is gy with the corresponding private key y.
2.
 EMBEnc: To encrypt an email m under a user’s public key gx

and the CSP’s public key gy, it picks a random element rAZq
lease cite this article as: Liu Q, et al. Secure and privacy preserving key
ppl (2011), doi:10.1016/j.jnca.2011.03.010
and a random element rAf0,1g logq, computes u1 ¼ gr ,
u2 ¼ r� H5 ðêð gx,gyÞ

r
Þ, and u3 ¼m� H4 ðêðH3ðrÞ,ðgxÞ

r
ÞÞ, and

sets the ciphertext Cm ¼ ðu1,u2,u3Þ.

3.
 KWEnc: To encrypt m’s keywords W1, . . . ,Wk ðkAZþ Þ under a

user’s public key gx, it computes H2ðêðg
x, H1ðWiÞ

r
ÞÞ, where

WiAfW1, . . . ,Wkg, sets the ciphertext CWi
¼H2ðêðg

x, H1ðWiÞ
r
ÞÞ,

and sends the following message to the CSP:

MSG0U2CSP ¼ ½Cm,CW1
, . . . ,CWk

�:
4.
 TCompute: To retrieve only the emails containing keyword
WjðjAZþ Þ, it computes the trapdoor TWj

¼H1ðWjÞ
xAG1 under

a user’s private key x, and sends it to the CSP.

5.
 KWTest: To determine whether a given email contains

keyword Wj, it tests whether CWi
¼H2ðêðu1, TWj

ÞÞ. If so,
KWTestðUpub,CWi

, TWj
Þ outputs 1. Otherwise, it outputs 0.

Note that if Wi¼Wj, then CWi
¼H2ðêðg

x,H1ðWiÞ
r
ÞÞ ¼ H2ðêðg

r ,
H1ðWjÞ

x
ÞÞ ¼H2ðêðu1,TWj

ÞÞ as required.

6.
 PDecrypt: To get an intermediate result of the decipherment, it

calculates r, computes Cr ¼ êðH3ðrÞ,u1Þ, and sends the follow-
ing results to the user:

MSGCSP2U ¼ ½Cm,CW1
, . . . ,CWk

,Cr�:

Note that r¼ u2 � H5ðêðg
x,gyÞ

r
Þ ¼ u2 � H5ðêðg

x,grÞ
y
Þ. There-

fore, it could calculate r using the CSP’s private key y.

7.
 Recovery: Given the ciphertext Cm ¼ ðu1,u2,u3Þ and Cr, it

computes m ¼ u3 � H4ððCrÞ
x
Þ to recover the message m. Note

that: m¼ u3 � H4ðêðH3ðrÞ,ðgxÞ
r
ÞÞ ¼ u3 � H4ðêðH3ðrÞ,grÞ

x
Þ ¼ u3�

H4ððCrÞ
x
Þ.

For the sake of reducing the computational overhead and
increasing the searching speed, the CSP could calculate r as soon
as it receives MSG0U2CSP , and stores the message as follows:

MSGStored@CSP ¼ ½Cm,CW1
, . . . ,CWk

,r�:

Security intuition: We provide the security intuition of the SPKS
scheme, whose security will be proved in Appendix A. According
to the SPKS scheme, the CSP is able to calculate r using its private
key y. Suppose the CSP knows H3ðrÞ ¼ gaAG1, where a is a random
element in Zq, u1 ¼ gr AG1, where rAZq is a random element
chosen by the user, and the user’s public key gxAG1, where xAZq is
the user’s private key, it cannot calculate êðg,gÞarx, assuming that the
BDH problem is hard. In other words, the CSP needs to compute
m¼ u3 � H4ðêðH3ðrÞ,ðgxÞ

r
ÞÞ ¼ u3 � H4ðêðg,gÞarx

Þ to recover the plain-
text, which corresponds to computing the BDH problem. Therefore,
the CSP, seeing only a random value r and calculating an inter-
mediate result of the decipherment, has no idea about what the
plaintext is.
6. Performance analysis

The main difference between PEKS and SPKS is that the former
uses the standard public key encryption algorithm to encrypt an
email without specifying its specific implementation, requiring all
the decryption to be done by a user, whereas the latter uses the
EMBEnc algorithm to encrypt an email, which encrypts an email
under a user’s public key and the CSP’s public key to enable
the CSP to participate in the partial decipherment. We claim that
SPKS enables the CSP to participate in the decipherment to reduce
the computational cost of a thin client, and thus it is more
adaptable to a cloud environment than PEKS. To validate
our claim, we compare the performance of SPKS with that of
PEKS during encrypting and decrypting an email in a user’s view
in this section.
word searching for cloud storage services. J Network Comput

dx.doi.org/10.1016/j.jnca.2011.03.010

Q. Liu et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 5
Here, we first assume some preconditions as follows:
1.
Tab
Com

O

m

m

ex

m

h

xo

P
A

Let q be a prime satisfying p¼ 2 mod 3 and let q43 be a prime
factor of pþ1. Let E be the elliptic curve defined by the
equation y2 ¼ x3þ1 over Fp. We use the Weil pairing on
elliptic curve E to implement SPKS, and use the ElGamal
encryption based on Elliptic Curve Cryptography (ECC) over
Fp to implement PEKS. Here, the group G1 is the subgroup of
order q of the group of points on the elliptic curve y2 ¼ x3þ1
over Fp, the group G2 is the subgroup of order q of F�p2 , and the
bilinear map e : G1 �G1-G2 is the Weil pairing on the
elliptic curve EðFpÞ.
2.
 We use L, f0,1gn, f0,1gn and k to denote the length of an email,
the plaintext space of SPKS, the plaintext space of PEKS, and
the number of keywords in an email, respectively.

For the purpose of discussion, we simply introduce the
ElGamal encryption based on Elliptic Curve Cryptography (ECC)
over Fp.
1.
 KeyGen: It picks a random element xAFp, and computes gx. The
user’s public key is gx with the corresponding private key x.
2.
 Encryption: To encrypt an email m, it translates m into an
element in Fp, picks a random element rAFp, computes
u1 ¼ gr , u2 ¼m � ðgxÞ

r , and sets ciphertext Cm ¼ ðu1,u2Þ.

3.
 Decryption: Given the ciphertext Cm ¼ ðu1,u2Þ, it computes

m¼ u2 � ððu1Þ
x
Þ
�1 to recover the message m.

Next, we compare the performance of SPKS with that of PEKS
under the following two cases:

Case I: n is sufficiently large such that it is either larger than or
the same as the maximal length L of any email. In this case, we
pad the shorter message to make all the emails to have the equal
length n.

(1) Computational cost of encryption: The EMBEnc algorithm
requires to first compute the point multiplication on the curve
EðFpÞ once to get u1 ¼ gr , then compute the Weil pairing of gx and
gy once, the modular exponentiation on F�p2 once, the hash
function from F�p2 to f0,1glogq

once, and the XOR operation once
to get u2 ¼ r� H5ðeðg

x,gyÞ
r
Þ, finally compute the hash function

from f0,1g� to a point of the curve EðFpÞ once, the point multi-
plication on the curve EðFpÞ once, the Weil pairing of H3ðrÞ and
ðgxÞ

r once, the hash function from F�p2 to f0,1gn once, and the XOR
operation once to get u3 ¼m� H4ðeðH3ðrÞ,ðgxÞ

r
ÞÞ. The computa-

tion for the Weil pairing of gx and gy is independent of the
message to be encrypted, and hence can be done once for all.
Therefore, SPKS generally needs to execute the Weil pairing
operation once, the point multiplication operation twice, the
modular exponentiation once, hash function operation three
times, and XOR operation twice, whereas PEKS needs to execute
the point multiplication operation twice and the modular multi-
plication once to encrypt an email.

The detailed comparison results are given in Table 1. We use
map, mul, exp, mod, has, and xor as abbreviations for the execu-
tions of the Weil pairing operation, the point multiplication
le 1
parison of computational cost of encryption in Case I.

peration PEKS SPKS

ap 0 1

ul 2 2

p 0 1

od 1 0

as 0 3

r 0 2

lease cite this article as: Liu Q, et al. Secure and privacy preserving
ppl (2011), doi:10.1016/j.jnca.2011.03.010
operation, the modular exponentiation operation, the modular
multiplication operation, the hash function operation, and the
XOR operation, respectively.

Several studies (Zhu et al., 2005) have shown that the most
expensive computation is the computation for the Weil pairing,
the next is the point multiplication and the modular exponentia-
tion, the third is the operation on the finite field, such as the
modular multiplication, and the least is the hash function and the
XOR operation. From Table 1, we know that SPKS has more
computational cost than PEKS, due to the fact that SPKS needs
to execute the Weil pairing once to encrypt an email.

(2) Communication cost of encryption: The EMBEnc algorithm
requires to send the additional logq-bits length ciphertext u2 to
the CSP, and thus SPKS has a little more communication cost
than PEKS.

(3) Computational cost of decryption: The Recovery algorithm
requires to first compute the modular exponentiation on F�p2 once,
then compute the hash function from F�p2 to f0,1gn once, finally
execute the XOR operation once to decrypt the ciphertext. The
computation for one bilinear map, which is the most expensive
operation, has been completed by the CSP. Therefore, SPKS
generally needs to execute the modular exponentiation once,
the hash function operation once, and the XOR operation once,
whereas PEKS needs to execute the point multiplication operation
once, the inversion operation once, and the modular multiplica-
tion once to decrypt an email.

The detailed comparison results are given in Table 2. We use
the same symbols as those in Table 1, and use inv as the
abbreviation for the execution of the inversion operation.

From Table 2, we know that the computational cost of
decryption in SPKS is less than that in PEKS.

(4) Communication cost of decryption: The Recovery algorithm
in SPKS requires to receive Cr together with the ciphertext of an
email, which could be used to recover the plaintext with lower
computational cost. The CSP needs to send the additional logq-bits
Cr to a user, and thus SPKS has a little more communication cost
than PEKS.

Next, we also show that SPKS has better performance than
PEKS in Case II.

Case II: n is a relatively small number in comparison with the
average length of most emails. In this case, we need to split a
longer email into several segments and pad the last segment to
make each segment to have the equal length n.

(1) Computational cost of encryption: We encrypt each seg-
ment of an email with the same parameters r and r, therefore, the
computation for u1 ¼ gr and u2 ¼ r� H4ðêðg

x,gyÞ
r
Þ, and the partial

computation for u3 that is H4ðêðH3ðrÞ,ðgxÞ
r
ÞÞ only needs to be done

once for an email. If an email needs to be split into M segments,
then SPKS generally needs to execute the Weil pairing operation
once, the point multiplication operation twice, the modular
exponentiation once, the hash function operation three times,
and XOR operation Mþ1 times, whereas PEKS needs to execute
point multiplication operation twice and the modular multiplication
Table 2
Comparison of computational cost in decryption in Case I.

Operation PEKS SPKS

map 0 0

mul 1 0

exp 0 1

inv 1 0

mod 1 0

has 0 1

xor 0 1

keyword searching for cloud storage services. J Network Comput

dx.doi.org/10.1016/j.jnca.2011.03.010

Q. Liu et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]6
M times to encrypt the M segments of an email under the same
conditions.

The detailed comparison results are given in Table 3. We use
the same symbols as those in Table 1, and assume that an email
needs to be split into M segments.

From Table 3, we know that as the number of segments of an
email increases, there is only a small computational cost increase
for executing one XOR operation in SPKS, whereas a large
computational cost increase for executing one modular multi-
plication operation in PEKS to encrypt the email.

(2) Communication cost of encryption: We encrypt each
segment of an email with the same parameters r and r, but only
append to the first segment with the k encrypted keywords. As
described in Section 4, for the sake of reducing the computational
overhead and increasing the searching speed, the CSP could
calculate r as soon as it receives MSG0U2CSP , and stores the message
as follows:

MSGStored@CSP ¼ ½Cm,CW1
, . . . ,CWk

,r�:

Therefore, the CSP is able to know which segments belong to the
same email by examining the value of r, provided that we choose
different r for each email. To determine whether a given email
contains keyword Wj, the CSP executes the KWTest algorithm
once, and returns all the segments of the email. We need to
append to each segment of an email with its k encrypted key-
words in PEKS, because the CSP cannot know which segments
belong to the same email. If an email should be split into M

segments, then SPKS only needs to send the keywords once for an
email, but PEKS needs to send the keywords M times. In other
words, as the number of segments of an email increases, there is
only a small communication cost increase for sending the addi-
tional logq-bits ciphertext u2 in SPKS, whereas a large commu-
nication cost increase for sending the additional k � logq-bits
keywords in PEKS to encrypt the email.

(3) Computational cost of decryption: For the same reason, as
the number of segments of an email increases, there is only a
small computational cost increase for executing one XOR opera-
tion in SPKS, whereas more computational cost increases for
executing one modular multiplication operation in PEKS to
decrypt the email.

The detailed comparison results are given in Table 4. We use
the same symbols as those in Table 2, and assume that an email
needs to be split into M segments.
Table 3
Comparison of computational cost of encryption in Case II.

Operation PEKS SPKS

map 0 1

mul 2 2

exp 0 1

mod M 0

has 0 3

xor 0 Mþ1

Table 4
Comparison of computational cost of decryption in Case II.

Operation PEKS SPKS

map 0 0

mul 1 0

exp 0 1

inv 1 0

mod M 0

has 0 1

xor 0 M

Please cite this article as: Liu Q, et al. Secure and privacy preserving
Appl (2011), doi:10.1016/j.jnca.2011.03.010
(4) Communication cost of decryption: The communication
cost of decryption in Case II is the same as that in Case I.

Therefore, the encryption cost of SPKS is comparable to that
of PEKS, but the decryption cost of SPKS is much less than that of
PEKS in the case of large emails.
7. Conclusion

In this paper, we investigated the characteristics of cloud
storage and proposed the SPKS scheme for cloud storage services.
It allows the CSP to participate in the decipherment, thus a user
could pay less computational overhead for decryption. Further-
more, it is a searchable encryption scheme, thus the CSP could
search the encrypted files efficiently without leaking any infor-
mation. It is provable that the proposed scheme has semantic
security against adaptive chosen plaintext attacks. By perfor-
mance analysis, we show that our scheme outperforms the
scheme proposed by Boneh et al. (2004) when applied to a cloud
environment.
Acknowledgements

This work is supported by the National Natural Science
Foundation of China under Grant Nos. 61073037 and 90718034,
Hunan Provincial Science and Technology Program under Grant
Nos. 2010GK2003 and 2010GK3005, and Changsha Science
and Technology Program under Grant Nos. K1003064-11 and
K1003062-11.
Appendix A. Security proof

To analyze the security of the SPKS scheme, we provide the
following theorem, which shows that the SPKS scheme is seman-
tically secure under the BDH assumption:

Theorem A.1. Let H1 and H2 be random oracles from f0,1g� to G�1
and from G to f0,1gn, respectively. Suppose A is an IND-CPA

adversary that has the advantage e against the SPKS scheme. Suppose

A makes qH2
40 hash function queries to H2. Then, there is an

algorithm B that solves the BDH problem with the advantage at least

e0 ¼ 2e=qH2
and a running time OðtimeðAÞÞ.

Proof. B is given rAf0,1glogq

, m0 ¼ g, m1 ¼ ga, m¼ gb, m1 ¼ ggAG1,
where a, b, g are random elements in Zq. Its goal is to output
D¼ êðg,gÞabgAG. Let D be the solution to the BDH problem. B
finds D by interacting with A as follows:

KeyGen: B sends ðm0,m1Þ as the public key to A.

H1-queries: B maintains a list of tuples called H1-list, in which

each entry is a tuple of the form /rj,fjS. The list is initially empty.

When A queries H1 at a point of ri, B checks if ri ¼ rj where rj

already appears on H1-list in the form of /rj,fjS. If so, B responds

to A with H1ðriÞ ¼ fj. Otherwise, B picks a random element dAZq,

computes fi ¼ m � gd ¼ gb � gdAG�1, adds the tuple /ri,fiS to H1-

list, and responds to A with H1ðriÞ ¼ fi.

H2-queries: B maintains a list of tuples called H2-list, in which

each entry is a tuple of the form /rj,ljS. The list is initially empty.

When A queries H2 at a point of ri, B checks if ri ¼ rj where rj

already appears on H2-list in the form of /rj,ljS. If so, B responds

to A with H2ðriÞ ¼ lj. Otherwise, B picks a random string liAf0,1gn,

adds the tuple /ri,liS to H2-list, and responds to A with H2ðriÞ ¼ li.

Challenge: A outputs two messages m0 and m1 on which

it wishes to be challenged. B randomly picks bAf0,1g and a

random string SAf0,1gn, and gives the ciphertext C ¼ ðm1,SÞ to A.
keyword searching for cloud storage services. J Network Comput

dx.doi.org/10.1016/j.jnca.2011.03.010

Q. Liu et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 7
The decryption of the ciphertext is

mb ¼ S� H2ðêðH1ðrÞ,m1Þ
g
Þ ¼ S� H2ðêðH1ðrÞ,gaÞgÞ

¼ S� H2ðêðg
b � gd,gaÞgÞ ¼ S� H2ðêðg,gÞagðbþdÞ:

Hence, C is a valid ciphertext for mb as required.

Guess: A outputs its guess b0Af0,1g for b. B picks a random pair

/ri,liS from H2-list and outputs ri as the solution to the given

instance of BDH.

To complete the proof of Theorem A.1, we now show that B
correctly outputs D with the probability at least 2e=qH2

. Let Q be the

event that A issues a query for v. If :Q , we know that the decryption

of the ciphertext is independent of A’s view. Let Pr½b¼ b0� be the

probability that A outputs the correct result, therefore, in the real

attack Pr½b¼ b0j:Q � ¼ 1
2. Since A has the advantage e, jPr½b¼ b0j:

Q �� 1
2 jZe. According to the following formulae, we know Pr½Q �Z2e:

Pr½b¼ b0� ¼ Pr½b¼ b0j:Q �Pr½:Q �þPr½b¼ b0jQ �Pr½Q �

r1
2 Pr½:Q �þPr½Q � ¼ 1

2 þ
1
2Pr½Q �,

Pr½b¼ b0�ZPr½b¼ b0j:Q �Pr½:Q � ¼ 1
2 Pr½:Q � ¼ 1

2 �
1
2Pr½Q �:

Therefore, we have Pr½Q �Z2e in the real attack. That is to say, A
will issue a query for l with the probability at least 2e. B will

choose the correct pair with the probability at least 1=qH2
and

thus, B produces the correct answer with the probability at least

e0 ¼ 2e=qH2
as required.
Please cite this article as: Liu Q, et al. Secure and privacy preserving
Appl (2011), doi:10.1016/j.jnca.2011.03.010
References

Boneh D, Crescenzo G, Ostrovsky R, Persiano G. Public key encryption with
keyword search. In: Proceedings of Eurocrypt 2004, Lecture notes in computer
science, vol. 3027; 2004. p. 506–22.

Boneh D, Franklin M. Identity based encryption from the weil pairing. SIAM
Journal of Computing 2003;32(3):586–615 [also as an extended abstract in
Crypto, 2001].

Boneh D, Waters B. Conjunctive, subset, and range queries on encrypted data. In:
Proceedings of TCC 2007, Lecture notes in computer science, vol. 4392; 2007.
p. 535–54.

Chang Y.-C, Mitzenmacher M. Privacy preserving keyword searches on remote
encrypted data. In: Proceedings of ACSN 2005, Lecture notes in computer
science, vol. 3531; 2005. p. 442–55.

Diament T, Lee HK, Keromytis AD, Yung M. The dual receiver cryptosystem and its
applications. In: Proceedings of the ACM CCS; 2004. p. 330–43.

Haclgiimfi H, Iyer B, Li C, Mehrotra S. Executing SQL over encrypted data in
database-service-provider model. Technical Report TR-DB-02-02, Database
Research Group at University of California, Irvine; 2002.

Liu Q, Wang G, Wu J. An efficient privacy preserving keyword search scheme in
cloud computing. In: Proceedings of IEEE TrustCom-09 in conjunction with
IEEE CSE-09; 2009. p. 715–20.

Shi E, Bethencourt J, Chan T-HH, Song D, Perrig A. Multi-dimensional range query
over encrypted data. In: Proceedings of IEEE symposium on security and
privacy; 2007. p. 350–64.

Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted data.
In: Proceedings of the 2000 IEEE symposium on security and privacy; 2000.
p. 44–55.

Weiss A. Computing in the clouds. netWorker 2007;11(4):16–25.
Zhu R, Yang G, Wong D. An efficient identity-based key exchange protocol with

KGS forward secrecy for low-power devices. In: Internet and network
economics: Proceedings of the first international workshop WINE, Lecture
notes in computer science, vol. 3828; 2005. p. 500–09.
keyword searching for cloud storage services. J Network Comput

dx.doi.org/10.1016/j.jnca.2011.03.010

	Secure and privacy preserving keyword searching for cloud storage services
	Introduction
	Related work
	Preliminaries
	Related definitions
	Outline of the PEKS scheme

	Outline of the proposed scheme
	Definitions
	Semantic security of the SPKS scheme

	Construction of the SPKS scheme
	Performance analysis
	Conclusion
	Acknowledgements
	Security proof
	References

